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1. Neural Networks, Symmetries and Groups
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Neural Networks

Neural networks consist of a composition of layers, where each layer has
the following form:

Vector Space W

Vector Space W

Vector Space V

Learnable, Linear

Fixed, Non-Linear

The learnable, linear layer function is often given in the form of a
parameterised weight matrix so that learning can take place.
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Machine Learning, Symmetries and Groups

In machine learning, we would like to develop principled approaches for
constructing neural networks.

One important approach is

to identify symmetries that exist in data (e.g. permutation symmetry
in a set of objects),

view the symmetries formally as groups (e.g symmetric group), and
then

create neural network architectures that take advantage of the group
symmetries in the data when performing learning.
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Machine Learning, Symmetries and Groups

In some cases, this has been done by using

layer spaces that are tensor power representations of a subgroup
G (n) of GL(n), that is, a group homomorphism

ρk : G (n) → GL((Rn)⊗k) (1)

given by
ρk(g)(v1 ⊗ · · · ⊗ vk) := gv1 ⊗ · · · ⊗ gvk (2)

for all g ∈ G (n) and for all vectors vi ∈ Rn.

and
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Machine Learning, Symmetries and Groups

layer functions that are equivariant to G (n):

Definition

If ρk : G (n) → GL((Rn)⊗k) and ρl : G (n) → GL((Rn)⊗l) are two
representations of G (n), then ϕ : (Rn)⊗k → (Rn)⊗l is said to be
equivariant to G (n) if

ϕ(ρk(g)[v ]) = ρl(g)[ϕ(v)] (3)

for all g ∈ G (n) and v ∈ (Rn)⊗k .

(Rn)⊗k
ρk(g)

ϕϕ

(Rn)⊗l (Rn)⊗l

(Rn)⊗k

ρl(g)

(4)

to give ...
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Group Equivariant Neural Networks

The layers have the following form:

(Rn)⊗k

Learnable, Linear

Fixed, Non-Linear

G(n)

G(n)

G(n)

G(n)-equivariant

G(n)-equivariant

(Rn)⊗l

(Rn)⊗l

In particular, if G (n) is compact, then we call this network a compact
matrix group equivariant neural network.
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Weight Matrix Classfications

Much work has been done to characterise all of the possible equivariant,
learnable, linear layers that appear in a group equivariant neural network
for different groups G (n).

???

G(n)

G(n) (Rn)⊗l

(Rn)⊗k

Sn: Maron et al. (2018), Ravanbakhsh (2020), Pearce-Crump (2022)

An,O(n),Sp(n),SO(n): Finzi (2021), Pearce-Crump (2023)

and so on!
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There is a but ...

As quantum group people, we know that:

There exist symmetries that cannot be understood formally as groups.
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2. Research Question
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Research Question

Can we construct neural networks that take advantage of quantum
symmetries in data?
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3. Compact Matrix Quantum Groups
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The Passage from Groups to Quantum Groups

Recommended: An excellent motivation piece written by Weber (2020)
titled Quantum Symmetry.

Let G (n) be a compact matrix group. Consider the C*-algebra C (G (n)) of
continuous functions on G (n), which is commutative. Firstly, we can
define functions ui ,j : G (n) → C for 1 ≤ i , j ≤ n such that ui ,j(g) = gi ,j .
Note that the ui ,j generate C (G (n)) and the matrices u := (ui ,j) and u⊤

are invertible.

Moreover, by considering the composition ◦ in G (n), we have a map

∆ : C (G (n)) → C (G (n)× G (n)) (5)

∆(f )(g , h) := f (g ◦ h) (6)

We also have that C (G (n)× G (n)) ∼= C (G (n))⊗ C (G (n)), which
motivates the following definition ...
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Compact Matrix Quantum Groups

Definition

Let A be a C ∗-algebra, and let uij ∈ A, for all i , j ∈ [n], for some n ∈ N.
Let u be the n× n matrix whose (i , j)-entry is uij , that is, u ∈ Mn(A). The
pair (A, u) is said to be a compact matrix quantum group if

1 the elements uij generate A,

2 u and u⊤ = (uji ) are invertible matrices, and

3 the comultiplication map ∆ : A → A⊗ A defined by

∆(uij) :=

(∑
k

uik ⊗ ukj

)
(7)

is a ∗-homomorphism.

Convention dictates that we denote A by C (G ), and so we often refer to
G , or sometimes the pair (G , u), as the compact matrix quantum group.
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Fundamental Theorem of Compact Matrix Quantum
Groups

Theorem

Let (A, u) be a compact matrix quantum group for n ∈ N.

Then A is commutative if and only if A ∼= C (G (n)) for some compact
matrix subgroup G (n) of GL(n).

Hence if A is noncommutative, we obtain true quantum groups!
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Just as groups have representations, so do quantum groups.

Definition

Let (G , u) be a compact matrix quantum group. Then an n-dimensional
representation of G is an element v ∈ Mn(C (G )) such that

∆(vij) =

(∑
k

vik ⊗ vkj

)
(8)

Note that:

The matrix u given in the definition of a compact matrix quantum group
(G , u) is an n-dimensional representation called the fundamental
representation of G .
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We can also define tensor product and complex conjugation, as follows.

Definition

Let v ∈ Mn(C (G )) and w ∈ Mm(C (G )).

The tensor product v ⊗ w ∈ Mnm(C (G )) is simply the Kronecker
product of matrices, and

The complex conjugate is v̄ = (v∗ij ) ∈ Mn(C (G )).

Similar to group representations, if v ,w are representations of a compact
matrix quantum group (G , u), then it can be shown that both the tensor
product and complex conjugate are also representations of G .
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We can also define the analogous concept of equivariance for compact
matrix quantum groups.

Definition

Let v ∈ Mn(C (G )) and w ∈ Mm(C (G )) be representations of a compact
matrix quantum group G .

A map ϕ : Cn → Cm is said to be G -equivariant (also known as an
intertwiner) if ϕv = wϕ.

We denote the set of all such linear maps by HomG (v ,w), and it can be
shown to be a vector space.
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4. Woronowicz–Tannaka–Krein Duality
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Woronowicz–Tannaka–Krein Duality

Intuition

The Woronowicz formulation of Tannaka–Krein duality is an important
result in the theory of compact matrix quantum groups.

Informally, the duality says that we can construct a compact matrix
quantum group just by knowing its fundamental representation category.
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Two-Coloured Words

Consider the two-coloured set {◦, •} consisting of a white point and a
black point.

For any non-negative integer k , we can construct a word w of length
k as a string of k colours from {◦, •}.
If k = 0, we define ∅ to be the empty word.

1 w1 := ◦ • • ◦ • ◦ is a word of length 6

2 w2 := • ◦ • • ◦ is a word of length 5.

3 w3 := ∅ is the word of length 0.
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Two-Coloured Words

The concatenation of two words, w1,w2, is the concatenation of
their two strings and is written as w1 · w2.

If w1 := ◦ • • ◦ • ◦ and w2 := • ◦ • • ◦, then w1 · w2 = ◦ • • ◦ • ◦ • ◦ • • ◦

There is a homomorphism on words, w 7→ w̄ , that is first defined
on the individual colours by ◦̄ := •, •̄ := ◦, and is then applied
element wise to the word w .

If w1 := ◦ • • ◦ • ◦, then w̄1 := • ◦ ◦ • ◦ •

If w is a word, then its involution w∗ is the word read backwards
together with its colours inverted.

If w1 := ◦ • • ◦ • ◦, then w∗
1 := • ◦ • ◦ ◦ •
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Tensor Products of the Fundamental Representation

We can use words of colours to create tensor products of the fundamental
representation of a compact matrix quantum group as follows.

Definition

Let (G , u) be a compact matrix quantum group, where u ∈ Mn(C (G )).
Let u◦ := u and u• := ū. Then for any word w formed from the
two-coloured set {◦, •}, we define u⊗w to be the corresponding tensor
product of representations u◦ and u•.

If w is the word ◦ • • ◦, then

u⊗w = u ⊗ ū ⊗ ū ⊗ u (9)
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Space of Intertwiners for Tensor Products of the
Fundamental Representation

If wk and wl are words of lengths k, l respectively, then we define
FundRepG (wk ,wl) to be HomG (u

⊗wk , u⊗wl ), that is, the vector space

{ϕ : (Cn)⊗k → (Cn)⊗l | ϕu⊗wk = u⊗wlϕ} (10)

of linear G -equivariant maps.
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Two-Coloured Representation Categories

Definition

A two-coloured representation category C is a collection of subspaces
C(wk ,wl), where wk ,wl are two words constructed from {◦, •} of lengths
k , l respectively, that are subspaces of the set of all linear maps
(Cn)⊗k → (Cn)⊗l and which satisfy the following axioms.

1 If ϕ1 ∈ C(wk ,wl), ϕ2 ∈ C(w ′
k ,w

′
l ), then ϕ1 ⊗ ϕ2 ∈ C(wk · w ′

k ,wl · w ′
l ).

2 If ϕ1 ∈ C(wk ,wl), ϕ2 ∈ C(wl ,wm), then ϕ2 ◦ ϕ1 ∈ C(wk ,wm).

3 If ϕ ∈ C(wk ,wl), then ϕ∗ ∈ C(wl ,wk).

4 For every word w (having some length k), we have 1⊗k
n ∈ C(w ,w),

and

5 The colours ◦ and • are dual to each other.

A one-coloured representation category is a two-coloured
representation category where u◦ = u•.
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From this, we obtain two important results describing the relationship
between two-coloured representation categories and compact matrix
quantum groups.

Theorem

If (G , u) is a compact matrix quantum group, then FundRepG is a
two-coloured representation category.

and

Theorem (Woronowicz–Tannaka–Krein Duality)

Let C be a two-coloured representation category. Then there exists a
unique compact matrix quantum group (G , u) such that FundRepG = C.
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5. Two-Coloured Set Partitions
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Idea

If we have a way of creating two-coloured representation categories, then
by Woronowicz–Tannaka–Krein duality we can create many compact
matrix quantum groups.

Two-coloured set partition categories form a great source of
two-coloured representation categories.
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Set Partitions

For non-negative integers l and k, consider the set [l + k] := {1, . . . , l + k}.

We can create a set partition of [l + k] by partitioning it into a number of
subsets. We call the subsets of a set partition blocks.

Let Πl+k be the set of all set partitions of [l + k].

We see that
{1, 6 | 2, 3 | 4, 8 | 5, 9 | 7, 10 | 11} (11)

is a set partition of [5 + 6] having six blocks.
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One-Coloured Partition Diagrams

Then, for each set partition π in Πl+k , we can associate to it a diagram,
called a (one-coloured) (k , l)–partition diagram, consisting of two rows
of vertices and edges between vertices such that there are

l vertices on the top row, labelled left to right by 1, . . . , l

k vertices on the bottom row, labelled left to right by l + 1, . . . , l + k,
and

the edges between the vertices correspond to the connected
components of π.

Technically, the diagram represents the equivalence class of all diagrams
with connected components equal to the blocks of π.
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For the set partition

π = {1, 6 | 2, 3 | 4, 8 | 5, 9 | 7, 10 | 11} (12)

setting l = 5 and k = 6, we have that a (6, 5)–partition diagram for π is

11

1 2 3 4 5

6 7 8 9 10
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Two-Coloured Partition Diagrams

A (two-coloured) (wk ,wl)–partition diagram dπ is a (k, l)–partition
diagram together with two-coloured words wk ,wl of lengths k , l
respectively such that

the vertices on the top row have the same colours as the word wl ,
from left to right, and

the vertices on the bottom row have the same colours as the word
wk , from left to right.

We define the two-coloured partition vector space Pwl
wk (n) to be the

C-linear span of the set of all (wk ,wl)–partition diagrams.
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Again, for the set partition

π = {1, 6 | 2, 3 | 4, 8 | 5, 9 | 7, 10 | 11} (13)

setting l = 5 and k = 6, and choosing

w5 to be the word • ◦ • • ◦, and
w6 to be the word ◦ • • ◦ • ◦,

we have that a two-coloured (w6,w5)–partition diagram for π is

11

1 2 3 4 5

6 7 8 9 10
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Operations on Two-Coloured Set Partition Diagrams

We can define three C-(bi)linear operations on two-coloured set partition
diagrams:

composition: • : Pwm
wl

(n)× Pwl
wk
(n) → Pwm

wk
(n) (14)

tensor product: ⊗ : Pwl
wk
(n)× Pwm

wq
(n) → Pwl ·wm

wk ·wq
(n) (15)

involution: ∗ : Pwl
wk
(n) → Pwk

wl
(n) (16)
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Composition

If dπ2 is the (◦ ◦ • • ◦ •, ◦ • • ◦)–partition diagram

(17)

and dπ1 is the two-coloured (• ◦ • ◦ ◦ ◦, ◦ ◦ • • ◦ •)–partition diagram

(18)

then dπ2 ◦ dπ1 is the (• ◦ • ◦ ◦ ◦, ◦ • • ◦)–partition diagram

(19)

Then dπ2 • dπ1 is the diagram (19) multiplied by n, since one connected
component was removed from the middle row of dπ2 ◦ dπ1 .
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Tensor Product

If dπ1 is the two-coloured (◦ •, • ◦ •)–partition diagram

(20)

and dπ2 is the two-coloured (◦ • ◦ •, ◦ ◦ •)–partition diagram

(21)

then dπ1 ⊗ dπ2 is the (◦ • ◦ • ◦ •, • ◦ • ◦ ◦ •)–partition diagram

(22)
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Involution

If dπ is the two-coloured (◦ • • ◦ • ◦, • ◦ • • ◦)–partition diagram

(23)

then d∗
π is the (• ◦ • • ◦, ◦ • • ◦ • ◦)–partition diagram

(24)
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Two-Coloured Partition Categories

Definition

Using these operations, we form the two-coloured partition category
P(n), whose

set of objects is the set of two-coloured words, and

whose set of morphisms between words wk and wl , P(n)(wk ,wl), is
the set of all (wk ,wl)–partition diagrams.

This category can be shown to be a strict monoidal involutive category.
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We also have the following important definition.

Definition

A two-coloured category of partitions K(n) is any subcategory of P(n)
such that

1 the collection of sets K(n)(wk ,wl), for any words wk ,wl , are a subset
of P(n)(wk ,wl),

2 the collection of sets K(n)(wk ,wl) is closed under the composition,
tensor product and involution operations,

3 the identity partition diagram is an element of K(n)(◦, ◦),
4 the (top-row) pair partition diagram corresponding to the set partition

{1, 2} of {1, 2} superimposed with the word w2 := ◦• is in
K(n)(∅,w2).

Edward Pearce-Crump CMQG Equivariant Neural Networks May 20, 2024 40 / 69



We now create a map that takes

two-coloured (wk ,wl)–partition diagrams dπ living in a two-coloured
category of partitions to

to

linear maps ϕπ : (Cn)⊗k → (Cn)⊗l living in a two-coloured
representation category.

By choosing the standard basis for Cn, we obtain nl × nk matrices instead,
which are denoted by Eπ in what follows.

Edward Pearce-Crump CMQG Equivariant Neural Networks May 20, 2024 41 / 69



Suppose that dπ is a (wk ,wl)–partition diagram. We define Eπ as follows.

Associate the indices i1, i2, . . . , il with the vertices in the top row of dπ and
j1, j2, . . . , jk with the vertices in the bottom row of dπ. Then, if Sπ((I , J))
is defined to be the set{

(I , J) ∈ [n]l+k
∣∣∣ if x , y are in the same block of π, then ix = iy

}
(25)

(where we have momentarily replaced the elements of J by il+m := jm for
all m ∈ [k]), we have that

Eπ :=
∑

I∈[n]l ,J∈[n]k
δπ,(I ,J)EI ,J (26)

where

δπ,(I ,J) :=

{
1 if (I , J) ∈ Sπ((I , J))

0 otherwise
(27)

and EI ,J is the nl × nk matrix having a 1 in the (I , J) position and is 0
elsewhere. We extend the definition of the map dπ 7→ Eπ linearly to
Pwl
wk (n).
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If dπ is the two-coloured (◦ • • ◦ • ◦, • ◦ • • ◦)–partition diagram

11

1 2 3 4 5

6 7 8 9 10

then, if n = 3, for example, we see from

2

1 2 2 1 3

1 2 1 3 2

that the (1, 2, 2, 1, 3 | 1, 2, 1, 3, 2, 2)-entry of Eπ is 1, whereas, from

2

1 1 2 1 3

2 2 1 3 1

we see that the (1, 1, 2, 1, 3 | 2, 2, 1, 3, 1, 2)-entry of Eπ is 0.
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Monoidal Functor

The map dπ 7→ Eπ defines a monoidal functor between categories:

Theorem

The map dπ 7→ Eπ defines a strict C–linear monoidal functor

Θ : P(n) → Mat (28)

In fact, if K(n) is any two-coloured subcategory of partitions of P(n),
then, letting C(n) be the image of K(n) under dπ 7→ Eπ, that is

C(n)(wk ,wl) = {Eπ | dπ ∈ K(n)(wk ,wl)} (29)

we get that C(n) is a two-coloured representation category.
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Hence we can use Woronowicz-Tannaka-Krein duality together with the
previous result to obtain what we set out to show, namely that
two-coloured categories of partitions are a great source of new compact
matrix quantum groups. Said precisely, we have

A two-coloured category of partitions K(n) determines a unique compact
matrix quantum group (G , u), where u is the n-dimensional fundamental
representation of G .

We call these compact matrix quantum groups easy.
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6. Compact Matrix Quantum Group
Equivariant Neural Networks
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Group Equivariant Neural Networks

Recall from before a Group Equivariant Neural Network for matrix groups
G (n):

(Rn)⊗k

Learnable, Linear

Fixed, Non-Linear

G(n)

G(n)

G(n)

G(n)-equivariant

G(n)-equivariant

(Rn)⊗l

(Rn)⊗l
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Compact Matrix Quantum Group Equivariant Neural Networks

A Compact Matrix Quantum Group Equivariant Neural Network for a
CMQG (G (n), u) consists of layers of the form:

((Cn)⊗k , u⊗wk )

Learnable, Linear

Fixed, Non-Linear

G(n)

G(n)

G(n)

G(n)-equivariant

G(n)-equivariant

((Cn)⊗l , u⊗wl )

((Cn)⊗l , u⊗wl )

Note that the learnable, linear, G (n)-equivariant function is in
FundRepG (wk ,wl).
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The formulation of a compact matrix quantum group equivariant neural
network is well-defined since the fundamental representation category of a
compact matrix quantum group is a two-coloured representation category.

Moreover, we get:

Theorem

Let fNN be a compact matrix quantum group equivariant neural network
for a compact matrix group (G (n), u). If all of the words used in the
network only consist of the white point ◦, then fNN is, in fact, a compact
matrix group equivariant neural network for G (n).

Hence

Every compact matrix group equivariant neural network is a compact
matrix quantum group equivariant neural network.
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7. Weight Matrix Classification
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We can go one step further with the following intermediate theorem,
whose proof is immediate.

Theorem

Suppose that (G (n), u) is a compact matrix quantum group that has been
obtained under Woronowicz–Tannaka–Krein duality from a two-coloured
representation category (which is FundRepG(n) by the statement of the

duality). Let W be a weight matrix of size nl × nk appearing in a compact
matrix quantum group equivariant neural network for G (n), coming from
words wk ,wl of lengths k and l respectively. If {M1, . . . ,Mp} is a
spanning set for FundRepG(n)(wl−1,wl), then

W =

p∑
i=1

wiMi (30)
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But if the two-coloured representation category FundRepG is the image
under dπ 7→ Eπ of a two-coloured category of partitions K(n), we know
what the spanning set is!

Consequently, we can characterise the weight matrices that appear in any
easy compact matrix quantum group equivariant neural network, as
follows.

Theorem

With the same setup as before, if (G (n), u) is an easy compact matrix
quantum group coming from a two-coloured category of partitions K(n),
then

W =
∑

π|dπ∈K(n)(wk ,wl )

wπEπ (31)
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Furthermore, we benefit from the fact that characterisations of
two-coloured categories of partitions and their associated easy compact
matrix quantum groups have been studied extensively in the literature.

We give some important examples in the following slides.
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One-Coloured Partition Categories

One-coloured partition categories were introduced initially by Banica and
Speicher (2009), studied further in Banica et al. (2010), Weber (2013),
Raum and Weber (2014, 2015), and characterised fully by Raum and
Weber (2016).

They can be divided into four cases: group, non-crossing, half-liberated,
and the rest.

We focus on the first two cases.
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One-Coloured Partition Categories: The Group Case

Banica and Speicher (2009) provided a full characterisation. The image of
all (k , l)–partition diagrams satisfying the appropriate conditions on the
blocks determines the weight matrices.

Group Conditions on the blocks of the (k , l)–
partition diagrams

Symmetric group Sn —

Orthogonal group O(n) Blocks come in pairs.

Hyperoctahedral group Hn Blocks are of even size.

Bistochastic group Bn Blocks are of size one or two.

Modified symmetric group
S ′
n := Z2 × Sn

The number of blocks of odd size is even.

Modified bistochastic group
B ′
n := Z2 × Bn

Has an even number of blocks of size one
and any number of blocks of size two.
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Example: Bistochastic group Bn, n = k = l = 2

We need all (2, 2)–partition diagrams whose blocks are of size one or two.
They are:

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

Now apply dπ 7→ Eπ to each diagram:
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

1,1 1,2 2,1 2,2

1,1 1 0 0 1

1,2 0 0 0 0

2,1 0 0 0 0

2,2 1 0 0 1





1,1 1,2 2,1 2,2

1,1 1 0 0 0

1,2 0 0 1 0

2,1 0 1 0 0

2,2 0 0 0 1





1,1 1,2 2,1 2,2

1,1 1 0 0 0

1,2 0 1 0 0

2,1 0 0 1 0

2,2 0 0 0 1





1,1 1,2 2,1 2,2

1,1 1 1 1 1

1,2 0 0 0 0

2,1 0 0 0 0

2,2 1 1 1 1





1,1 1,2 2,1 2,2

1,1 1 0 1 0

1,2 0 1 0 1

2,1 1 0 1 0

2,2 0 1 0 1





1,1 1,2 2,1 2,2

1,1 1 0 1 0

1,2 1 0 1 0

2,1 0 1 0 1

2,2 0 1 0 1





1,1 1,2 2,1 2,2

1,1 1 0 0 1

1,2 1 0 0 1

2,1 1 0 0 1

2,2 1 0 0 1





1,1 1,2 2,1 2,2

1,1 1 1 0 0

1,2 1 1 0 0

2,1 0 0 1 1

2,2 0 0 1 1





1,1 1,2 2,1 2,2

1,1 1 1 0 0

1,2 0 0 1 1

2,1 1 1 0 0

2,2 0 0 1 1





1,1 1,2 2,1 2,2

1,1 1 1 1 1

1,2 1 1 1 1

2,1 1 1 1 1

2,2 1 1 1 1



Finally, assign a weight to each matrix, and then add them together to
obtain the weight matrix:


1,1 1,2 2,1 2,2

1,1 w1,...,10 w4,8,9,10 w4,5,6,10 w1,4,7,10

1,2 w6,7,8,10 w3,5,8,10 w2,6,9,10 w5,7,9,10

2,1 w5,7,9,10 w2,6,9,10 w3,5,8,10 w6,7,8,10

2,2 w1,4,7,10 w4,5,6,10 w4,8,9,10 w1,...,10

 (32)
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One-Coloured Partition Categories: The Non-Crossing Case

In order to state the classifications for the non-crossing case, we first need
the following definition.

Definition

A set partition diagram dπ corresponding to a set partition π of [l + k] is
said to be crossing if there exist four integers
1 ≤ x1 < x2 < x3 < x4 ≤ l + k satisfying:

1 x1 and x3 are in the same block

2 x2 and x4 are in the same block, and

3 x1 and x2 are not in the same block.

Otherwise, dπ is said to be non-crossing.
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While

11

1 2 3 4 5

6 7 8 9 10

is crossing,

11

1 2 3 4 5

6 7 8 9 10

is non-crossing.
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One-Coloured Partition Categories: The Non-Crossing Case

Banica and Speicher (2009) found six via liberation; Weber (2013) found the last
one (not shown).

Quantum Group Conditions on the blocks of the (k, l)–
partition diagrams

Symmetric quantum group S+
n non-crossing

Orthogonal quantum group
O(n)+

Blocks come in pairs, non-crossing.

Hyperoctahedral quantum group
H+

n

Blocks are of even size, non-crossing.

Bistochastic quantum group B+
n Blocks are of size one or two, non-crossing.

Modified symmetric quantum
group S ′+

n

The number of blocks of odd size is even,
non-crossing.

Modified bistochastic quantum
group B ′+

n

Has an even number of blocks of size one
and any number of blocks of size two, non-
crossing.
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In fact, we obtain a stronger classification for the non-crossing case due to
the following theorem by Banica and Speicher (2009).

Theorem

The spanning sets for the seven compact matrix quantum groups in the
non-crossing case are in fact bases for n ≥ 4.
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Two-Coloured Partition Categories

Two-coloured partition categories are much richer than one-coloured
partition categories because the generators uij of the corresponding
compact matrix quantum groups are no longer self-adjoint.

A full classification is unknown, but Tarrago and Weber (2016; 2018)
classified all two-coloured partitions in the group and non-crossing case.

We only discuss U(n) and U(n)+ here for time!
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The Unitary Group U(n)

Compact matrix quantum group equivariant neural networks for the
unitary group U(n) consist of nl × nk weight matrices that are determined
by the spanning set consisting of the image of all (wk ,wl)–partition
diagrams whose blocks come in pairs such that

if two vertices of a block are in the same row, then they have different
colours,

if two vertices of a block are in different rows, then they have the
same colours.

Note that if we consider compact matrix group equivariant neural
networks for U(n), then only nk × nk weight matrices (i.e k = l) exist, and
they are determined by a spanning set that is the image of all
permutations in the symmetric group Sk , expressed as (k, k)–partition
diagrams. This is the classic version of Schur–Weyl duality.
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Unitary Group U(n), n = k = l = 2

Consider the weight matrix in a compact matrix quantum group
equivariant neural network for U(2), where the linear layer is
((C2)⊗2, u⊗wk ) → ((C2)⊗2, u⊗wl ) for wk = wl = ◦•. Then, by the
previous slide, the only valid (wk ,wl)–partition diagrams are

3 4

1 2

3 4

1 2

giving matrices



1,1 1,2 2,1 2,2

1,1 1 0 0 0

1,2 0 1 0 0

2,1 0 0 1 0

2,2 0 0 0 1





1,1 1,2 2,1 2,2

1,1 1 0 0 1

1,2 0 0 0 0

2,1 0 0 0 0

2,2 1 0 0 1


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However, if we consider the weight matrix in a compact matrix group
equivariant neural network for U(2), where the linear layer is
((C2)⊗2, u⊗wk ) → ((C2)⊗2, u⊗wl ), then wk = wl = ◦◦, and the only valid
(wk ,wl)–partition diagrams are

3 4

1 2

3 4

1 2

giving matrices



1,1 1,2 2,1 2,2

1,1 1 0 0 0

1,2 0 1 0 0

2,1 0 0 1 0

2,2 0 0 0 1





1,1 1,2 2,1 2,2

1,1 1 0 0 0

1,2 0 0 1 0

2,1 0 1 0 0

2,2 0 0 0 1



instead.
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The Unitary Quantum Group U(n)+

Unsurprisingly:

Compact matrix quantum group equivariant neural networks for the
unitary quantum group U(n)+ consist of nl × nk weight matrices that are
determined by the same spanning set as for U(n) but with the image of all
crossing (wk ,wl)–partition diagrams removed.
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8. Summary
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Conclusion

Encoding symmetries into machine learning models is a hot topic!

There exist symmetries that cannot be understood formally as groups.

We have constructed new machine learning models, called compact
matrix quantum group equivariant neural networks, to learn from data
that has a quantum symmetry.

We have used Woronowicz–Tannaka–Krein duality to characterise the
weight matrices for a number of quantum groups.
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